IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK FOR STATE – OWNED ASSETS FORECASTING OF ROOM RENTAL PRICES IN INDONESIA

Authors

  • Yusrina Lathifah
  • Tanda Setiya Polytechnic of State Finance Stan (PKN STAN), Ministry of Finance Indonesia
  • Roby Syaiful Ubed Polytechnic of State Finance Stan (PKN STAN), Ministry of Finance Indonesia

DOI:

https://doi.org/10.21837/pm.v21i27.1286

Keywords:

Artificial Neural Network, State-Owned Asset, Non-Tax Revenue, Yogyakarta

Abstract

Leasing is a state-owned assets utilization scheme that needs to be optimize because of its easy to find objects and large potential for non-tax revenue. In the city of Yogyakarta, the economy grows above the national average, this is supported by the mobility of tourists, overseas students, and businessman. The characteristics of the regional economy are suitable for the optimization of state-owned assets through leasing scheme in the form of lodging room. The author tries to develop a state-owned assets leasing price forecasting model for lodging room using an Artificial Neural Network to capture the potential state revenue. By using market data for lodging room rental from the OYO website, author create a model architecture with the backpropagation algorithm. Analysis results of this study indicate that the obtained network model achieves an accuracy of 97.5%. There are 25 state-owned assets buildings that can be projected as objects of lodging space rental utilization with a predicted rental value of IDR 108,570.00 to IDR 122,669.00 per day.

Downloads

Download data is not yet available.

References

Abidoye, R. B., & Chan, A. P. . (2017). Artificial Neural Network in Property Valuation: Application Framework and Research Trend. Property Management, 35(5), 554–571. https://doi.org/https://doi.org/10.1108/PM-06-2016-0027 DOI: https://doi.org/10.1108/PM-06-2016-0027

Agmasari, S. (2019). Destinasi Wisata Paling Diminati Masyarakat Indonesia pada 2020. Kompas. https://travel.kompas.com/read/2019/12/26/210500927/destinasi-wisata-paling-diminati-masyarakat-indonesia-pada-2020?page=all

The Director General of State Assets Management Regulation Number 4/KN/2018 concerning Technical Instruction for Valuation of State Assets Lease, Pub. L. No. 4/KN/2018 (2018).

Fausett, L. (1994). Fundamentals of Neural Networks Architectures, Algorithms, and Applications. Prentice Hall, Inc.

Haykin, S. (2008). Neural Netwoeks and Learning Machines. 3rd Edition (3rd ed.). Pearson Education, Inc.

Heaton, J. (2017). The Number of Hidden Layers. Heaton Research. https://www.heatonresearch.com/2017/06/01/hidden-layers.html

Hermawan, A. (2006). Jaringan Syaraf Tiruan: Teori dan Aplikasi (F. S. Suryanto (ed.)). Penerbit Andi.

Indonesia, M. of F. (2020). Laporan Keuangan Pemerintah Pusat Tahun 2019.

Management, D. G. of S. A. (2019). Roadmap Direktorat Jenderal Kekayaan Negara 2019-2028.

Sudarto, S. (2002). Jaringan Syaraf Tiruan (sebuah teori). DINAMIK, VII(2), 145–154. https://media.neliti.com/media/publications/242305-jaringan-syaraf-tiruan-28793927.pdf

Yacim, J. A., & Boshoff, D. (2016). Comparison of Mass Appraisal Models for Effective Prediction of Property Values. 16th African Real Estate Society Conference, 218–252. https://doi.org/DOI:10.15396/afres2016_151 DOI: https://doi.org/10.15396/afres2016_151

Yogyakarta City Statistical Center. (2020). Laju Pertumbuhan Ekonomi DIY Tahun 2019. Badan Pusat Statistik. https://yogyakarta.bps.go.id/pressrelease/2020/02/05/1037/pertumbuhan-ekonomi-diy-triwulan-iv-2019.html#:~:text=Perekonomian DIY selama 2019 tumbuh,yang tumbuh sebesar 8%2C90

Yogyakarta City Tourism Office. (2019). 5 Alasan Libur Lebaran Menyenangkan di Jogja Dijamin Bikin Kangen. Official Website. https://pariwisata.jogjakota.go.id/detail/index/428

Downloads

Published

2023-07-26

How to Cite

Lathifah, Y., Setiya, T., & Ubed, R. S. (2023). IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK FOR STATE – OWNED ASSETS FORECASTING OF ROOM RENTAL PRICES IN INDONESIA. PLANNING MALAYSIA, 21(27). https://doi.org/10.21837/pm.v21i27.1286