THE EFFECT OF SECURITY IN THE GREEN BUILDING PRICE PREDICTION MODEL: A COMPARISON BETWEEN MULTIPLE LINEAR REGRESSION AND MACHINE LEARNING APPROACHES
DOI:
https://doi.org/10.21837/pm.v22i31.1484Keywords:
Green Building, Machine Learning Model, Multiple Linear Regression, Security of BuildingAbstract
Green building (GB) and building security are two pivotal factors that significantly influence the valuation of property prices. Nevertheless, the research on these determinants was very limited and no empirical study was done to prove the reliability of the factors as price determinants for green building. Hence, this study examines the factors by using two distinct approaches, namely the Multiple Regression Model (MRL) and Machine Learning (ML) to fill the existing empirical gap. With MRL as the conventional approach and ML as an advanced technique, the results were compared to provide maximum effectiveness in analysing the factors included. The data analysis was conducted based on a real GB dataset collected, which comprises 240 green building transactions in the city area of Kuala Lumpur, Malaysia. Prior to MLR modelling, an ANOVA test was conducted to test the statistical significance of all the independent variables (IVs) used in this study, while ML used the algorithm consisting of random forest, decision tree, linear regressor, ridge and lasso. The results indicate that building security has a strong and statistically significant impact on the price of green buildings in the MLR model. However, when it comes to enhancing prediction accuracy using the Random Forest and Decision Tree algorithms in ML models, building security has a relatively minimal influence. These results highlight a substantial difference between the outcomes of the two approaches. Specifically, the machine learning model did not demonstrate a significant relationship between green building attributes and price prediction, whereas the multiple regression model suggests otherwise.
Downloads
References
Abdul-Rahman, S., Mutalib, S., Zulkifley, N. H., & Ibrahim, 1. (2021). Advanced Machine Learning Algorithms for House Price Prediction: Case Study in Kuala Lumpur. International Journal of Advanced Computer Science and Applications, West Yorkshire, 12(12), 736-745. DOI: https://doi.org/10.14569/IJACSA.2021.0121291
Abdullahi, A., Usman, H., Ibrahim, I., Tatari, A., & Polytechnic, A. (2018). Determining House Price for Mass Appraisal Using Multiple Regression Analysis Modeling in Kaduna North. ATBU Journal of Environmental Technology, 11(1), 26-40..
Atilola, M. I., Ismail, A., Achu, K., & Bujang, A. A. (2019). An Evaluation of Factors Causing Variance in Property Assessment. Planning Malaysia, 17(1), 82-93. DOI: https://doi.org/10.21837/pmjournal.v17.i9.588
Azian, F. U. M., Yusof, N., & Kamal, E. M. (2020). Problems in high-rise residential building: From management perspective. IOP Conference Series: Earth and Environmental Science, 452(1). DOI: https://doi.org/10.1088/1755-1315/452/1/012087
Benjamin, J. D., Guttery, R. S., & Sirmans, C. F. (2004). Mass Appraisal: An Introduction to Multiple Regression Analysis for Real Estate Valuation, J. Real Estate Pract. Educ., 7(1), 65–77. DOI: https://doi.org/10.1080/10835547.2004.12091602
Burinskien, M. (2014). Models of Factors Influencing the Real Estate Price, Environ. Eng. 8th Int. Conf. May 19–20, 2011, Vilnius, Lith., no. October, pp. 873–877.
Borde, S., Rane, A., Shende, G., & Shetty, S. (2017), Real Estate Investment Advising Using Machine Learning, Int. Res. J. Eng. Technol., 4, 1821–1825.
Božić, B., Milićević, D., Pejić, M., & Marošan, S. (2013). The use of multiple linear regression in property valuation. Geonauka, 01(01):41-45 DOI: https://doi.org/10.14438/gn.2013.06
Bungau, C.C., Bungau, T., Prada, I.F., Prada, M.F. (2022). Green Buildings as a Necessity for Sustainable Environment Development: Dilemmas and Challenges. Sustainability, 2022, 14. DOI: https://doi.org/10.3390/su142013121
Candas, E., Kalkan, S. B., & Yomralioglu, T. (2015). Determining the Factors Affecting Housing Prices, FIG Work. Week 2015 From Wisdom Ages to Challenges Mod. World Sofia, Bulg., no. May 2015, 4–9.
Chang, Y. F., Choong, W. C., Looi, S. Y., Pan, W. Y., & Goh, H. L. (2019). Analysis of housing prices in Petaling district, Malaysia using functional relationship model. International Journal of Housing Markets and Analysis, 12(5), 884–905. https://doi.org/10.1108/IJHMA-12-2018-0099 DOI: https://doi.org/10.1108/IJHMA-12-2018-0099
Chen, J.-H., Ong, C. F., Zheng, L., & Hsu, S.-C. (2017). Forecasting Spatial Dynamics of the Housing Market using Support Vector Machine, Int. J. Strateg. Prop. Manag., 21(3), 273–283. doi: 10.3846/1648715x.2016.1259190. DOI: https://doi.org/10.3846/1648715X.2016.1259190
Choi, S. H., Jung, H.-Y., & Kim, H. (2019). Ridge fuzzy regression model, Int. J. Fuzzy Syst., 21(7), 2077–2090. DOI: https://doi.org/10.1007/s40815-019-00692-0
Čeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments, ISPRS Int. J. Geo-Information, 7(5), 1–12. doi: 10.3390/ijgi7050168. DOI: https://doi.org/10.3390/ijgi7050168
Daradi, S. A. M., Yusof, U. K., & Kader, N. I. B. A. (2018). Prediction of Housing Price Index in Malaysia Using Optimized Artificial Neural Network, Adv. Sci. Lett., 24(2), 1307–1311. DOI: https://doi.org/10.1166/asl.2018.10738
Dimopoulos, T., Tyralis, H., Bakas, N., & Hadjimitsis, D. (2018). Accuracy measurement of Random Forests and Linear Regression for mass appraisal models that estimate the prices of residential apartments in Nicosia, Cyprus, Adv. Geosci., 45, 377–382. DOI: https://doi.org/10.5194/adgeo-45-377-2018
Ferlan, N., Bastic, M., & Psunder, I. (2017). Influential Factors on the Market Value of Residential Properties, Inz. Ekon. Econ., 28(2), 135–139. doi: http://dx.doi.org/10.5755/j01.ee.28.2.13777. DOI: https://doi.org/10.5755/j01.ee.28.2.13777
Golbaz, S., Nabizadeh, R., & Sajadi, H. S. (2019). Comparative study of predicting hospital solid waste generation using multiple linear regression and artificial intelligence, J. Environ. Heal. Sci. Eng., 17(1), 41–51. DOI: https://doi.org/10.1007/s40201-018-00324-z
Ghaffarianhoseini, A., Dahlan, N. D., Berardi, U., Ghaffarianhoseini, A., Makaremi, N., & Ghaffarianhoseini, M. (2013). Sustainable Energy Performances of Green Buildings: A Review of Current Theories, Implementations and Challenges, Renew. Sustain. Energy Rev., 25, 1–17. doi: 10.1016/j.rser.2013.01.010. DOI: https://doi.org/10.1016/j.rser.2013.01.010
Hoon Lgeh, O. L., Abdul Jalil, A. F., Marzukhi, M. A., Kwong, Q. J., & Nasrudin, N. (2021). The Well-being of Urban Residents of Serviced Apartment in USJ, Subang Jaya, Selangor, Malaysia. IOP Conference Series: Earth and Environmental Science, 685(1). https://doi.org/10.1088/1755-1315/685/1/012018 DOI: https://doi.org/10.1088/1755-1315/685/1/012018
Huang, Y. (2019). Predicting home value in California, United States via machine learning modeling, Stat. Optim. & Inf. Comput., 7(1), 66–74. DOI: https://doi.org/10.19139/soic.v7i1.435
Ismail, N., Rahmat, M. N., & Said, S. Y. (2015). Proceedings of the Colloquium on Administrative Science and Technology, New Sustain. Heritage-led urban Regen. mode, no. October, 2–7. doi: 10.1007/978-981-4585-453.
Jin, C. & Lee, G. (2020). Exploring spatiotemporal dynamics in a housing market using the spatial vector autoregressive Lasso: A case study of Seoul, Korea, Trans. GIS, 24(1), 27–43. DOI: https://doi.org/10.1111/tgis.12585
Jang, D. C., Kim, B., & Kim, S. H. (2018). The effect of green building certification on potential tenants’ willingness to rent space in a building. Journal of Cleaner Production, 194, 645–655. https://doi.org/10.1016/j.jclepro.2018.05.091 DOI: https://doi.org/10.1016/j.jclepro.2018.05.091
Nabilla, F., Husain, M., Rahman, R. A., & Ibrahin, N. N. (2012). Housing Bubbles Assessment in Klang Valley, 2005-2010, Exp. Klang Val. Malaysia. Adv. Nat. Appl. Sci., 1(6), 33–41.
Niu, W.-J., Feng, Z.-K., Feng, B.-F., Min, Y.-W., Cheng, C.-T., & Zhou, J.-Z. (2019). Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir. Water, 11(1), 88. DOI: https://doi.org/10.3390/w11010088
Mao, Y. & Yao, R. (2020). A geographic feature integrated multivariate linear regression method for house price prediction, in 2020 3rd International Conference on Humanities Education and Social Sciences (ICHESS 2020), 2020, 347–351. DOI: https://doi.org/10.2991/assehr.k.201214.522
Masrom, S., Mohd, T., Jamil, N. S., Rahman, A. S. A., & Baharun, N. (2019). Automated Machine Learning based on Genetic Programming: a case study on a real house pricing dataset, in 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS), 2019, 48–52. DOI: https://doi.org/10.1109/AiDAS47888.2019.8970916
Madhuri, C. H. R., Anuradha, G., & Pujitha, M. V. (2019). House price prediction using regression techniques: A comparative study, in 2019 International Conference on Smart Structures and Systems (ICSSS), 2019, 1–5. DOI: https://doi.org/10.1109/ICSSS.2019.8882834
MGBC (2019). Malaysia Green Building Council, Retrieved from, 2019.
Olanrewaju, A. L., Lim, X. Y., Tan, S. Y., Lee, J. E., & Adnan, H. (2018). Factors affecting housing prices in Malaysia: Analysis of the supply side. Planning Malaysia, 16(2), 225-235. DOI: https://doi.org/10.21837/pm.v16i6.477
Park, B. & Kwon Bae, J. (2015). Using Machine Learning Algorithms for Housing Price Prediction: The case of Fairfax County, Virginia housing data, Expert Syst. with Appl. 42, 2928–2934. doi: 10.1016/j.eswa.2014.11.040. DOI: https://doi.org/10.1016/j.eswa.2014.11.040
Portnov, B. A., Trop, T., Svechkina, A., Ofek, S., Akron, S., & Ghermandi, A. (2018). Factors Affecting Homebuyers’ Willingness to Pay Green Building Price Premium: Evidence from a Nationwide Survey in Israel. Build. Environ., 137, 280–291. doi: 10.1016/j.buildenv.2018.04.014. DOI: https://doi.org/10.1016/j.buildenv.2018.04.014
Ping, Y. (2020). Analysis of the influence of multiple linear regression on construction price. Stat. Appl., 9(1), 19–25. DOI: https://doi.org/10.12677/SA.2020.91003
Radwan, M. R., Kashyout, A. E.-H. B., ELshimy, H. G., & Ashour, S. F. (2015). Green building as concept of sustainability Sustainable strategy to design Office building, 2nd ISCASE-2015 Dubai, 41.
Raja Zakariah, R. N. H. & Md Termizi, S. F. (2019). The determinants of house price in Malaysia, in Petaling district, Malaysia using functional relationship model, Int. J. Hous. Mark. Anal.
Shafiei, M. W. M., Abadi, H., & Osman, W. N. (2017). The Indicators of Green Buildings for Malaysian Property Development Industry. Int. J. Appl. Eng. Res., 12(10), 2182–2189.
Shalizi, C. (2021). Advanced Data Analysis from an Elementary Point of View. Cambridge University Press
Shi, Y. & Liu, X. (2019). Research on the Literature of Green Building Based on the Web of Science: A Scientometric Analysis in Citespace (2002-2018), Sustain., 11(13), 2–22. doi: 10.3390/su11133716. DOI: https://doi.org/10.3390/su11133716
Suriansyah, Y., Sutandi, A. C., & Kusliansjah, Y. K. (2020). The Potential of Natural Daylight Utilization for the Visual Comfort of Occupants in Two Units of Service Apartments Certified as Green Buildings in Kuala Lumpur, Malaysia. International Journal Of Integrated Engineering, 12(4), 276–289. https://doi.org/10.30880/ijie.2020.12.04.027
Thuraiya Mohd, Syafiqah Jamil, Suraya Masrom. (2020). Machine learning building price prediction with green building determinant. IAES International Journal of Artificial Intelligence (IJ-AI), 9(3), 379~386. ISSN: 2252-8938, DOI: 10.11591/ijai.v9.i3.pp379-386 DOI: https://doi.org/10.11591/ijai.v9.i3.pp379-386
Thuraiya Mohd, Muhamad Harussani, Suraya Masrom. (2022). Rapid Modelling of Machine Learning in Predicting Office Rental Price. International Journal of Advanced Computer Science and Applications, 13(12), 544-549. DOI: https://doi.org/10.14569/IJACSA.2022.0131266
Varma, A., Sarma, A., Doshi, S., & Nair, R. (2018). House price prediction using machine learning and neural networks, in 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), 2018, 1936–1939. DOI: https://doi.org/10.1109/ICICCT.2018.8473231
Wu, Z. & others (2020). Prediction of California House Price Based on Multiple Linear Regression. Acad. J. Eng. Technol. Sci., 3(7).
Wezel, M. Van & Potharst, R. (2005). Boosting the Accuracy of Hedonic Pricing Models, Econom. Inst. Rep. EI 2005-50, 2(December), 1–18.
Wang, C. & Wu, H. (2018). A new machine learning approach to house price estimation. New Trends Math. Sci., 6(4), 165–171. DOI: https://doi.org/10.20852/ntmsci.2018.327
Zian, O. B., Fam, S., Liang, C., Wahjono, S. I., & Yingying, T. (2019). A Critical Research of Green Building Assessment Systems in Malaysia Context. Int. J. Innov. Technol. Explor. Eng., 8(12S2), 778–785. DOI: https://doi.org/10.35940/ijitee.L1134.10812S219
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright & Creative Commons Licence
eISSN: 0128-0945 © Year. The Authors. Published for Malaysia Institute of Planners. This is an open-access article under the CC BY-NC-ND license.
The authors hold the copyright without restrictions and also retain publishing rights without restrictions.