IMPACT OF SUSPENDED SEDIMENT ON PAHANG RIVER DEVELOPMENT USING GEOGRAPHIC INFORMATION SYSTEM

Authors

  • Hasmida Mustaffa East Coast Environmental Research Institute, UNIVERSITI SULTAN ZAINAL ABIDIN, TERENGGANU, MALAYSIA
  • Mohd Khairul Amri Kamarudin Faculty of Applied Social Sciences, UNIVERSITI SULTAN ZAINAL ABIDIN, TERENGGANU, MALAYSIA
  • Mohd Ekhwan Toriman Faculty of Social Sciences and Humanities, UNIVERSITI KEBANGSAAN MALAYSIA, SELANGOR, MALAYSIA
  • Mohd Hafz Rosli Institute of Tropical Agriculture and Food Security, UNIVERSITI PUTRA MALAYSIA, SELANGOR, MALAYSIA
  • Sunardi Sunardi Graduate Program on Environmental Studies, UNIVERSITAS PADJADJARAN, BANDUNG, INDONESIA

DOI:

https://doi.org/10.21837/pm.v21i25.1228

Keywords:

Suspended sediment (SS), sedimentation pollutions, geographic information system (GIS), pollution management, Pahang River

Abstract

The measurement of different characteristics of a stream, including integrated water resource management, is dependent on sediment transport mechanisms. On the Pahang River, studies explored the spatial interpolation pattern of suspended sediment (SS) and water resource management. Sedimentation issues in the Pahang River have a significant impact on water resource management in the Pahang River basin. Furthermore, it may have an impact on local water consumption, recreational activities, and other factors, causing the river to become shallow and finally flood. This study was conducted to determine the SS pattern in the Pahang River with the approach of the Geographic Information System (GIS) technique and its significant colour based on spatial analysis. In addition, this study also evaluates the factors and effects of sedimentation through water source management. Three sampling stations from the Department of Irrigation and Drainage (DID) for three years (2000, 2004 and 2008) were selected along the Pahang River, where the parameter measured was suspended sediment (ton/year). The results obtained showed that the Pahang River receives a high amount of SS each year, where the higher amount was at the upper station (Sg. Yap), with an amount of 1876575 ton/year (2000), 613850.1 ton/year (2004) and 3458097 ton/year where it may be affected by sediment re-suspension and runoff from two outlets. Meanwhile, the downstream station (Lubuk Paku) received the least amount of SS, while the midstream station (Temerloh) received the most. The transit's speed and current may have an impact. This study's findings are critical in river and water resource management, especially of water resources for domestic use, ecotourism, river biodiversity, and hydrology.

Downloads

Download data is not yet available.

References

Al-Mukhtar, M. (2019). Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad. Environmental Monitoring and Assessment, 191(11), 34-47. DOI: https://doi.org/10.1007/s10661-019-7821-5

Azid, A., Che Hasnam, C. N., Juahir, H., Amran, M. A., Toriman, M. E., Kamarudin, M. K. A., Mohd Saudi, A. S., Gasim, M. B., Mustafa, A. D. (2015). Coastal Erosion Measurement along Tanjung Lumpur to Cherok Paloh, Pahang during the Northeast Monsoon Season. Jurnal Teknologi, 74(1), 27–34. DOI: https://doi.org/10.11113/jt.v74.3009

Azinuddin, M., Som, A. P. M., Saufi, S. A. M., Zarhari, N. A. A., Amin, W. A. A. W. M., & Shariffuddin, N. S. M. (2022). Investigating overtourism impacts, perceived man-made risk and tourist revisit intention. Planning Malaysia, 20(3), 239-254. DOI: https://doi.org/10.21837/pm.v20i22.1142

Bashir, N., Saeed, R., Afzaal, M., Ahmad, A., Muhammad, N., Iqbal, J., Khan, A., Maqbool, Y., & Hameed, S. (2020). Water quality assessment of lower Jhelum canal in Pakistan by using geographic information system (GIS). Groundwater for Sustainable Development, 10. DOI: https://doi.org/10.1016/j.gsd.2020.100357 DOI: https://doi.org/10.1016/j.gsd.2020.100357

Camara, M., Jamil, N. R., & Abdullah, A. F. bin. (2019). Impact of land uses on water quality in Malaysia: a review. In Ecological Processes (Vol. 8, Issue 1). Springer Verlag. DOI: https://doi.org/10.1186/s13717-019-0164-x DOI: https://doi.org/10.1186/s13717-019-0164-x

Chen, L., Wei, G., Zhong, Y., Wang, G., & Shen, Z. (2014). Targeting priority management areas for multiple pollutants from non-point sources. Journal of Hazardous Materials, 280, 244–251. DOI: https://doi.org/10.1016/j.jhazmat.2014.08.012

Choubin, B., Darabi, H., Rahmati, O., Sajedi-Hosseini, F., & Kløve, B. (2018). River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Science of the Total Environment, 615, 272–281. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.293

Chuenchum, P., Xu, M., & Tang, W. (2020). Estimation of soil erosion and sediment yield in the lancang-mekong river using the modified revised universal soil loss equation and GIS techniques. Water, 12(1), 87-94. DOI: https://doi.org/10.3390/w12010135

De Mesnard, L. (2013). Pollution models and inverse distance weighting: Some critical remarks. Computers and Geosciences, 52, 459–469. DOI: https://doi.org/10.1016/j.cageo.2012.11.002

Department of Irrigation and Drainage (DID). 2009. Annual Flooding Report of Pahang State 2008/2009. Department of Irrigation and Drainage Malaysia (DID Malaysia).

Duan, W., Takara, K., He, B., Luo, P., Nover, D., & Yamashiki, Y. (2013). Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Science of the Total Environment, 461–462, 499–508. DOI: https://doi.org/10.1016/j.scitotenv.2013.05.022

Enciso, J., Nelson, S. D., Perea, H., Uddameri, V., Kannan, N., & Gregory, A. (2014). Impact of residue management and subsurface drainage on non-point source pollution in the Arroyo Colorado. Sustainability of Water Quality and Ecology, 3, 25–32. DOI: https://doi.org/10.1016/j.swaqe.2014.11.002

Hanafiah, M. M., Ghazali, N. F., Harun, S. N., Abdulaali, H. S., AbdulHasan, M. J., Kamarudin, M. K. A. (2019). Assessing water scarcity in Malaysia: a case study of rice production. Desalination and water Treatment, 149, 274-287. DOI: https://doi.org/10.5004/dwt.2019.23841

Jaafar, o., Toriman, M. E., Sharifah Mastura, S. A., Gasim, M. B., Lan, P. I., Abdullah, P., Kamarudin, M. K. A., Abdul Aziz, N. A. (2010). Modeling the Impacts of Ringlet Reservoir on Downstream Hydraulic Capacity of Bertam River Using XPSWMM in Cameron Highlands, Malaysia. Research Journal of Applied Sciences 5(2), 47-53. DOI: https://doi.org/10.3923/rjasci.2010.47.53

Jabatan Meteorologi Malaysia Kementerian Alam Sekitar dan Air. Retrieve January 18, 2022, from https://www.met.gov.my/pendidikan/iklim/iklimmalaysia

Jabatan Pengairan dan Saliran. Retrieve January 18, 2022, from http://h2o.water.gov.my/v2/fail/rhnc/index.html

Kamarudin, M. K. A., Toriman, M. E., Juahir, H., Azid, A., Gasim, M. B., Saudi, A. S. M., Umar, R., Sulaiman, N. H., Ata, F. M., Mustafa, A. D., Amran, M. A., Yusoff, W. A., Azaman, F. (2015). Assessment of river plan change using RS and GIS technique. Jurnal Teknologi, 76(1), 31-38. DOI: https://doi.org/10.11113/jt.v76.2940

Kamarudin, M. K. A., Toriman, M. E., Rosli, M. H., Juahir, H., Aziz, N. A. A., Azid, A., Zainuddin, S. F. M., & Sulaiman, W. N. A. (2015). Analysis of meander evolution studies on effect from land use and climate change at the upstream reach of the Pahang River, Malaysia. Mitigation and Adaptation Strategies for Global Change, 20(8), 1319–1334. DOI: https://doi.org/10.1007/s11027-014-9547-6

Kamarudin, M. K. A., Toriman, M. E., Wahab, N. A., Rosli, H., Ata, F. M., & Faudzi, M. N. M. (2017). Sedimentation study on upstream reach of selected rivers in Pahang River Basin, Malaysia. International Journal on Advanced Science, Engineering and Information Technology, 7(1), 35–41. DOI: https://doi.org/10.18517/ijaseit.7.1.971

Khan, M. M. A., Shaari, N. A. B., Bahar, A. M. A., Baten, M. A., & Nazaruddin, D. B. (2014). Flood impact assessment in Kota Bharu, Malaysia: a statistical analysis. World Applied Sciences Journal, 32(4), 626-634.

Lam, N. S. N. (2009). Spatial Interpolation. In International Encyclopedia of Human Geography (Second Edition, Vol. 10). Elsevier. DOI: https://doi.org/10.1016/b978-0-08-102295-5.10427-5 DOI: https://doi.org/10.1016/B978-008044910-4.00530-7

Lee Goi, C. (2020). The river water quality before and during the Movement Control Order (MCO) in Malaysia. Case Studies in Chemical and Environmental Engineering, 2. DOI: https://doi.org/10.1016/j.cscee.2020.100027 DOI: https://doi.org/10.1016/j.cscee.2020.100027

Lee, I., Hwang, H., Lee, J., Yu, N., Yun, J., & Kim, H. (2017). Modeling approach to evaluation of environmental impacts on river water quality: A case study with Galing River, Kuantan, Pahang, Malaysia. Ecological Modelling, 353, 167–173. DOI: https://doi.org/10.1016/j.ecolmodel.2017.01.021

Li, Y., Wang, X., Fu, W., Xia, X., Liu, C., Min, J., Zhang, W., & Crittenden, J. C. (2019). Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling. Water Research, 161, 486–495. DOI: https://doi.org/10.1016/j.watres.2019.06.018

Lim, K. Y., Zakaria, N. A., & Foo, K. Y. (2020). Water quality assessment of urban catchment after the large-scale flood event: The worst natural tragedy at Pahang River, Malaysia. Desalination and Water Treatment, 175, 32–42. DOI: https://doi.org/10.5004/dwt.2020.24790

Liu, R., Zhang, P., Wang, X., Chen, Y., & Shen, Z. (2013). Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agricultural Water Management, 117, 9–18. DOI: https://doi.org/10.1016/j.agwat.2012.10.018

Lun, P. I., Gasim, Muhd. B., Toriman, Mohd. E., Rahim, S. Abd., & Kamaruddin, K. A. (2011). Hydrological Pattern of Pahang River Basin and Their Relation. Jurnal E-Bangi, 6(1), 29–37.

Madhloom, H. M., Al-Ansari, N., Laue, J., & Chabuk, A. (2018). Modeling spatial distribution of some contamination within the lower reaches of Diyala river using IDW interpolation. In Sustainability (Switzerland) (Vol. 10, Issue 1). MDPI. DOI: https://doi.org/10.3390/su10010022 DOI: https://doi.org/10.3390/su10010022

Mashuri, A., Adenan, N. H., & Hamid, N. Z. A. (2019). Determining the chaotic dynamics of hydrological data in flood-prone area. Civil Engineering and Architecture, 7(6), 71–76. DOI: https://doi.org/10.13189/cea.2019.071408 DOI: https://doi.org/10.13189/cea.2019.071408

Mohd, F. A., Abdul Maulud, K. N., Karim, O. A., Begum, R. A., Awang, N. A., Ahmad, A., Wan Mohamed Azhary, W. A. H., Kamarudin, M. K. A., Jaafar, M., Wan Mohtar, W. H. M. (2019). Comprehensive coastal vulnerability assessment and adaptation for Cherating Pekan coast, Pahang, Malaysia. Ocean & Coastal Management, 182, 104948. DOI: https://doi.org/10.1016/j.ocecoaman.2019.104948

Nguyen, T. H. D., Phan, K. D., Nguyen, H. T. T., Tran, S. N., Tran, T. G., Tran, B. L., & Doan, T. N. (2020). Total Suspended Solid Distribution In Hau River Using Sentinel 2a Satellite Imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 6(3/W1), 91–97. DOI: https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-91-2020 DOI: https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-91-2020

Of, A., Of, T., Events, R., Mann, U., & Basins, K. R. (2016). Analysis of Trends of Extreme Rainfall Events Using Mann Kendall Test: A Case Study in Pahang. Jurnal Teknologi, 4, 63–69.

Othman, Z., Wahid, M. A., Latib, F. W. M., Derahman, A., Muhamad, N. S., Khalid, K., & Rosli, S. H. (2017). Risk mapping on heavy metal and nutrients after flood event on Pahang River using interpolation distance weighted (IDW) approach. ARPN Journal of Engineering and Applied Sciences, 12(10), 3222-3227.

Panwar, A., Bartwal, S., Dangwal, S., Aswal, A., Bhandari, A., & Rawat, S. (2015). Water Quality Assessment of River Ganga using Remote Sensing and GIS Technique. In Cloud Publications International Journal of Advanced Remote Sensing and GIS (Vol. 4, Issue 1). DOI: http://technical.cloud-journals.com/index.php/IJARSG/article/view/Tech-442 DOI: https://doi.org/10.23953/cloud.ijarsg.116

Peterson, K. T., Sagan, V., Sidike, P., Cox, A. L., & Martinez, M. (2018). Suspended sediment concentration estimation from landsat imagery along the lower missouri and middle Mississippi Rivers using an extreme learning machine. Remote Sensing, 10(10). DOI: https://doi.org/10.3390/rs10101503 DOI: https://doi.org/10.3390/rs10101503

Rasdi, A. L. M., Som, A. P. M., Azinuddin, M., Nasir, M. N. M., & Khan, N. F. A. H. (2022). Local community perspective on responsible tourism and destination sustainability. Planning Malaysia, 20(3), 255-269. DOI: https://doi.org/10.21837/pm.v20i22.1143

Razali, A., Syed Ismail, S. N., Awang, S., Praveena, S. M., & Zainal Abidin, E. (2018). Land use change in highland area and its impact on river water quality: a review of case studies in Malaysia. In Ecological Processes (Vol. 7, Issue 1). Springer Verlag. DOI: https://doi.org/10.1186/s13717-018-0126-8 DOI: https://doi.org/10.1186/s13717-018-0126-8

Saberioon, M., Brom, J., Nedbal, V., Souc̆ek, P., & Císar̆, P. (2020). Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters. Ecological Indicators, 113. DOI: https://doi.org/10.1016/j.ecolind.2020.106236 DOI: https://doi.org/10.1016/j.ecolind.2020.106236

Saby, L., Nelson, J. D., Band, L. E., & Goodall, J. L. (2021). Nonpoint Source Water Quality Trading outcomes: Landscape-scale patterns and integration with watershed management priorities. Journal of Environmental Management, 294. DOI: https://doi.org/10.1016/j.jenvman.2021.112914 DOI: https://doi.org/10.1016/j.jenvman.2021.112914

Samy, I. E., Marghany, M. M., & Mohamed, M. M. (2014). Landslide modelling and analysis using remote sensing and GIS: A case study of Cameron highland, Malaysia. Journal of Geomatics, 8(2), 44-56.

Sisun, A., Mohd Yusoff, M., & Osman Salleh, K. (2015). Kesan aktiviti pembangunan tanah terhadap kawasan punca pengambilan air di Cameron Highlands. Malaysia Journal of Society and Space, 11(6), 34-53.

Sun, S., Zhang, J., Cai, C., Cai, Z., Li, X., & Wang, R. (2020). Coupling of non-point source pollution and soil characteristics covered by Phyllostachys edulis stands in hilly water source area. Journal of Environmental Management, 268, 25-34. DOI: https://doi.org/10.1016/j.jenvman.2020.110657

Toriman, M. E., Khairul, M., Kamarudin, A., Azlina, N., Aziz, A., Din, H. M., Ata, F. M., Abdullah, N. M., Syazwani, N., Rani, A., Saad, M. H., Abdullah, N. W., Gasim, M. B., & Mokhtar, M. (2012). Pengurusan Sedimen Terhadap Sumber Air Bersepadu: Satu Kajian Kes Di Sungai Chini, e-Bangi,7(1), 23-45.

Usali, N., & Hasmadi Ismail, M. (2010). Use of Remote Sensing and GIS in Monitoring Water Quality. Journal of Sustainable Development, 3(3), 1-14. DOI: https://doi.org/10.5539/jsd.v3n3p228

Wahab, N. A., Kamarudin, M. K. A, Toriman, M. E., Juahir, H., Saad, M. H. M., Ata, F.M., Ghazali, A., Hassan, A. R., Abdullah, H., Maulud, K. N., Hanafiah, M. M., Harith, H. (2019). Sedimentation and water quality deterioration problems at Terengganu River basin, Terengganu, Malaysia. Desalination and water Treatment, 149, 228-241. DOI: https://doi.org/10.5004/dwt.2019.23836

Downloads

Published

2023-04-27

How to Cite

Mustaffa, H., Kamarudin, M. K. A., Toriman, M. E., Rosli, M. H., & Sunardi, S. (2023). IMPACT OF SUSPENDED SEDIMENT ON PAHANG RIVER DEVELOPMENT USING GEOGRAPHIC INFORMATION SYSTEM. PLANNING MALAYSIA, 21(25). https://doi.org/10.21837/pm.v21i25.1228

Most read articles by the same author(s)

1 2 > >>