INCORPORATING ANN WITH PCR FOR PROGRESSIVE DEVELOPING OF AIR POLLUTION INDEX FORECAST

Authors

  • Ang Kean Hua Faculty of Social Sciences and Humanities, UNIVERSITI MALAYSIA SABAH (UMS)
  • Mohamad Pirdaus Yusoh Borneo Institute for Indigenous Studies, UNIVERSITI MALAYSIA SABAH (UMS)
  • Junaidah Yusof Faculty of Social Sciences and Humanities, UNIVERSITI TEKNOLOGI MALAYSIA (UTM)
  • Mohd Fadzil Ali Ahmad Kolej Kejuruteraan (KKEJ), UNIVERSITI MALAYSIA PAHANG (UMP)
  • Syazwani Yahya Faculty of Science and Technology, QUEST INTERNATIONAL UNIVERSITY (QIU)
  • Sazwan Syafiq Mazlan Faculty of Science and Technology, QUEST INTERNATIONAL UNIVERSITY (QIU)
  • Munaliza Jaimun Faculty of Business and Management, QUEST INTERNATIONAL UNIVERSITY (QIU)

DOI:

https://doi.org/10.21837/pm.v20i23.1152

Keywords:

Air Pollutant Index concentration, principal component regression, artificial neural network, combine prediction model

Abstract

This study circumscribes the modelling for concentration of Air Pollutant Index (API) in Selangor, Malaysia. The five monitored environmental pollutant concentrations (O3, CO, NO2, SO2, PM10) for ten years (2006 to 2015) data are used in this study to develop the prediction of API. The selected study area is located in rapid urbanised areas and surrounded by a number of industries, and is highly influenced by congested traffic. The principal component regression (PCR) for the combination of the principal component analysis together with multiple regression analysis, and artificial neural network (ANN), are used to predict the API concentration level. An additional approach using a combination method of PCR and ANN are included into the study to improve the API accuracy of prediction. The resulting prediction models are consistent with the observed value. The prediction techniques of PCR, ANN, and a combination method of R2 values are 0.931, 0.956, and 0.991 respectively. The combination method of PCR and ANN are detected to reduce the root mean square error (RMSE) of API concentration. In conclusion, different techniques were used in the combination method of API prediction which had improved and provided better accuracy rather than being dependent on the single prediction model.

Downloads

Download data is not yet available.

References

Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software, 20(10), 1263-1271. DOI: https://doi.org/10.1016/j.envsoft.2004.09.001

Afroz, R., Hassan, M. N., & Ibrahim, N. A. (2003). Review of air pollution and health impacts in Malaysia. Environmental research, 92(2), 71-77. DOI: https://doi.org/10.1016/S0013-9351(02)00059-2

Afzali, M., Afzali, A., & Zahedi, G. (2012). The potential of artificial neural network technique in daily and monthly ambient air temperature prediction. International Journal of Environmental science and development, 3(1), 33. DOI: https://doi.org/10.7763/IJESD.2012.V3.183

Al-Alawi, S. M., Abdul-Wahab, S. A., & Bakheit, C. S. (2008). Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environmental Modelling & Software, 23(4), 396-403. DOI: https://doi.org/10.1016/j.envsoft.2006.08.007

Awang, M.B., Jaafar, A.B., Abdullah, A.M., Ismail, M.B., Hassan, M.N., Abdullah, R., Johan, S., & Noor, H. (2000). Air quality in Malaysia: impacts, management issues and future challenges. Respirology, 5(2), 183-196. DOI: https://doi.org/10.1046/j.1440-1843.2000.00248.x

Azid, A., Juahir, H., Toriman, M. E., Endut, A., Kamarudin, M. K. A., Rahman, A., & Nordin, M. (2015). Source apportionment of air pollution: A case study in Malaysia. Jurnal Teknologi, 72(1), 83-88. DOI: https://doi.org/10.11113/jt.v72.2934

Azid, A., Juahir, H., Toriman, M.E., Kamarudin, M.K.A., Saudi, A.S.M., Hasnam, C.N.C., Aziz, N.A.A., Azaman, F., Latif, M.T., Zainuddin, S.F.M., & Osman, M.R. (2014). Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia. Water, Air, & Soil Pollution, 225(8), 2063. DOI: https://doi.org/10.1007/s11270-014-2063-1

Bates, J. M., & Granger, C. W. (1969). The combination of forecasts. Journal of the Operational Research Society, 20(4), 451-468. DOI: https://doi.org/10.1057/jors.1969.103

Brauer, M., & Hisham-Hashim, J. (1998). Peer reviewed: fires in Indonesia: crisis and reaction. Environmental science & technology, 32(17), 404A-407A. DOI: https://doi.org/10.1021/es983677j

Bruelli, U., Piazza, V., Pignato, L., Sorbello, F., & Vitabile, S. (2007). Two days ahead prediction of daily maximum concentration of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy, Atom. Journal of Environmental engineering, 41(14), 2967-2995. DOI: https://doi.org/10.1016/j.atmosenv.2006.12.013

Chia, K. S., Rahim, H. A., & Rahim, R. A. (2012). Neural network and principal component regression in non-destructive soluble solids content assessment: a comparison. Journal of Zhejiang University SCIENCE B, 13(2), 145-151. DOI: https://doi.org/10.1631/jzus.B11c0150

Department of Environmental (DOE) Malaysia (2012). Malaysia Environmental Quality Report. Kuala Lumpur: Department of Environment, Ministry of Natural Resources and Environment.

Dominick, D., Juahir, H., Latif, M. T., Zain, S. M., & Aris, A. Z. (2012). Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60, 172-181. DOI: https://doi.org/10.1016/j.atmosenv.2012.06.021

Dragomir, E. G. (2010). Air quality index prediction using K-nearest neighbor technique. Bulletin of PG University of Ploiesti, Series Mathematics, Informatics, Physics, LXII, 1(2010), 103-108.

Garcia, I., Rodriguez, J. G., & Tenorio, Y. M. (2011). Artificial neural network models for prediction of ozone concentrations in Guadalajara, Mexico. In Air Quality Models and Applications. InTech. DOI: https://doi.org/10.5772/16839

Giorgio, F. & Piero, M. (1996). Mathematical models for planning and controlling air quality. Proceedings of IIASA Workshop, 17.

HUA, A. K. (2018). Applied Chemometric Approach in Identification Sources of Air Quality Pattern in Selangor, Malaysia. Sains Malaysiana, 47(3), 471-479. DOI: https://doi.org/10.17576/jsm-2018-4703-06

Hua, A. K. (2017). Analytical and Detection Sources of Pollution Based Environmetric Techniques in Malacca River, Malaysia. Applied Ecology and Environmental Research, 15(1), 485-499. DOI: https://doi.org/10.15666/aeer/1501_485499

Hua, A. K., Kusin, F. M., & Praveena, S. M. (2016). Spatial Variation Assessment of River Water Quality Using Environmetric Techniques. Polish Journal of Environmental Studies, 25(6). DOI: https://doi.org/10.15244/pjoes/64082

Jamal, H.H., Pillay, M.S., Zailina, H., Shamsul, B.S., Sinha, K., Zaman Huri, Z., Khew, S.L., Mazrura, S., Ambu, A., Rahimah, A., & Ruzita, M.S. (2004). A study of health impact and risk assessment of urban air pollution in Klang valley, UKM Pakarunding Sdn Bhd, Malaysia, Kuala Lumpur.

Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11(2), 2664-2675. DOI: https://doi.org/10.1016/j.asoc.2010.10.015

Klaus, D., Poth, A., Voss, M., & Jáuregui, E. (2001). Ozone distributions in Mexico City using principal component analysis and its relation to meteorological parameters. Atmosfera, 14(4), 171-188.

Lengyel, A., Héberger, K., Paksy, L., Bánhidi, O., & Rajkó, R. (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57(8), 889-896. DOI: https://doi.org/10.1016/j.chemosphere.2004.07.043

McAdams, H. T., Crawford, R. W., & Hadder, G. R. (2000). A vector approach to regression analysis and its application to heavy-duty diesel emissions. Society of Automotive Engineers, Inc, Contract with the Energy Division of Oak Ridge DOI: https://doi.org/10.4271/2000-01-1961

National Laboratory (ORNL). Contract No. DE-AC05-00OR22725. Moustris, K. P., Ziomas, I. C., & Paliatsos, A. G. (2010). 3-Day-ahead forecasting of regional pollution index for the pollutants NO 2, CO, SO 2, and O 3 using artificial neural networks in Athens, Greece. Water, Air, & Soil Pollution, 209(1-4), 29-43. DOI: https://doi.org/10.1007/s11270-009-0179-5

Mutalib, S.N.S.A., Juahir, H., Azid, A., Sharif, S.M., Latif, M.T., Aris, A.Z., Zain, S.M., & Dominick, D. (2013). Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia. Environmental Science: Processes & Impacts, 15(9), 1717-1728. DOI: https://doi.org/10.1039/c3em00161j

Niska, H., Rantamäki, M., Hiltunen, T., Karppinen, A., Kukkonen, J., Ruuskanen, J., & Kolehmainen, M. (2005). Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment, 39(35), 6524-6536. DOI: https://doi.org/10.1016/j.atmosenv.2005.07.035

Niska, H., Hiltunen, T., Karppinen, A., Ruuskanen, J., & Kolehmainen, M. (2004). Evolving the neural network model for forecasting air pollution time series. Engineering Applications of Artificial Intelligence, 17(2), 159-167. DOI: https://doi.org/10.1016/j.engappai.2004.02.002

Noori, R., Khakpour, A., Omidvar, B., & Farokhnia, A. (2010). Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Systems with Applications, 37(8), 5856-5862. DOI: https://doi.org/10.1016/j.eswa.2010.02.020

Noori, R., Abdoli, M. A., Ghazizade, M. J., & Samieifard, R. (2009). Comparison of neural network and principal component-regression analysis to predict the solid waste generation in Tehran. Iranian Journal of Public Health, 38(1), 74-84.

Othman, N., Jafri, M. Z. M., & San, L. H. (2010). Estimating particulate matter concentration over arid region using satellite remote sensing: A case study in Makkah, Saudi Arabia. Modern Applied Science, 4(11), 131. DOI: https://doi.org/10.5539/mas.v4n11p131

Perez, P., & Reyes, J. (2006). An integrated neural network model for PM10 forecasting. Atmospheric Environment, 40(16), 2845-2851. DOI: https://doi.org/10.1016/j.atmosenv.2006.01.010

Quah, E. (2002). Transboundary pollution in Southeast Asia: the Indonesian fires. World Development, 30(3), 429-441. DOI: https://doi.org/10.1016/S0305-750X(01)00122-X

Rahman, N. H. A., Lee, M. H., & Latif, M. T. (2013). Forecasting of air pollution index with artificial neural network. Jurnal Teknologi (Sciences and Engineering), 63(2), 59-64. DOI: https://doi.org/10.11113/jt.v63.1913

Tecer, L. H. (2007). Prediction of SO 2 and PM Concentrations in a Coastal Mining Area (Zonguldak, Turkey) Using an Artificial Neural Network. Polish Journal of Environmental Studies, 16(4).

Torre, F.D.L. (2006). Indon haze spreads to NML.Retrieved from http://www.saipantribune.com/newsstory.aspx?cat¼1&newsID¼61706

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175. DOI: https://doi.org/10.1016/S0925-2312(01)00702-0

Downloads

Published

2022-11-30

How to Cite

Kean Hua, A., Pirdaus Yusoh, M., Yusof, J., Ahmad, M. F. A., Yahya, S., Mazlan, S. S., & Jaimun, M. (2022). INCORPORATING ANN WITH PCR FOR PROGRESSIVE DEVELOPING OF AIR POLLUTION INDEX FORECAST. PLANNING MALAYSIA, 20(23). https://doi.org/10.21837/pm.v20i23.1152

Most read articles by the same author(s)