

PLANNING MALAYSIA:

Journal of the Malaysian Institute of Planners **VOLUME 18 ISSUE 1** (2020), Page 35 – 44

THE IMPACT OF PERSONALITY AND LIFESTYLE ON INTERACTION WITH NATURE

Aisyah Abu Bakar¹, Mariana Mohamed Osman² & Mizan Hitam³

1,2 Kulliyyah of Architecture and Environmental Design INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA 3 Faculty of Architecture, Panning and Surveying UNIVERSITI TEKNOLOGI MARA

Abstract

Awareness on the complex interdepending systems between individuals and their contexts is a fundamental understanding of sustainable well-being. Collectivist beliefs and biospheric values translate the normative behaviours when environmental decisions are being made. Issue: Existing research has limited empirical evidence on the impact of personality and lifestyle (PL) on interaction with nature (IN) for Malaysia. Purpose: This paper aims to verify the statistical predictability of IN based on PL. Approach: Multiple Correlation and Multiple Linear Regression were carried out to assess linear associations and parameters of linear equations to predict IN components based on PL items. Findings: IN components were predictable by the majority of the PL items and 'feeling affected by the environmental loss of other countries' was the strongest predictor of IN.

Keyword: interaction with nature, personality and lifestyle

Mariana Mohamed Osman, Farah Eleena Zainudin, Noor Suzilawati Rabe, Mizan Hitam & Muhammad Faris Abdullah

An Assessment of Housing Affordability Index at Districts Level in Kelantan

INTRODUCTION

Human interdependence with the environment (HIE) is one of the strong sources of subjective sustainable well-being (SSWB). Personality and lifestyle (PL) and interaction with nature (IN) are dimensions of HIE that mutually stimulate one another (Abu Bakar et al., 2017a, 2017b, 2017c, 2018). Human beings willingly influence their surroundings directly and indirectly. The direct influence is often demonstrated in the willingness to assist each other in pursuing worthy life goals by helping and nurturing others and being good role models. The indirect influence is revealed in contagious emotions, empathic resonance and imitation of empathy towards the surrounding environment. This paper assesses the statistical predictability of IN based on PL.

LITERATURE REVIEW

Case studies based on articles from selected Asian Journals from the year 2011 onwards highlight conditional factors and potential determinants of Interaction with Nature (IN). Table 1 summarizes these findings.

 Table 1 Conditional Factors and Potential Determinants for Interaction with Nature

Conditional Factors	Potential Determinants	References
Unmaintained outdoor space: murky water that provides a place for mosquito breeding, too dense vegetation, and tall and bushy that blocked views.	Emotions and feelings (safety and security) induced in natural elements	(Maruthaveeran, 2012)
Motivation (to experience nature, to unwind) activities (appreciating nature, trekking and hill climbing, observing sunrise, observing hilltop scenery,).	The urge to be in nature, knowledge and ability to cope with outdoors.	(Zainol et al., 2012)
Housing value depended on a variety of park elements, conceptual or design of the park, distance to the park, views towards the park, and active areas in the park facing the house.	The inclination to be close to natural or outdoor areas, the urge to spend time in the outdoor environment	(Shukur et al., 2011)
Health condition and availability of natural environmental, views and accessibility to outdoors	The need to be in natural environment	(Ghazali & Abbas, 2011)
Physical well-being (active living); cognitive well- being (comfort, relaxed, and calmness, sense of privacy); and social well-being (interaction)	Having pleasant experience in natural setting: relaxed, energetic and healthy	(Mansor et al., 2012)
Accessibility to natural environment correspond with health and behaviour	Health condition depends on outdoor environment	(Khotdee et al., 2012)
Stimulation of natural elements to encourage motivation (sense of connectedness to greeneries and flexibility of spaces and diversity of natural elements)	Sense of curiosity and feeling engaged, creative and active in natural setting	(Faizi et al., 2013)
Age, gender, health-related conditions (stamina, health issues) and facilities in outdoor areas	Physical health and capability in outdoor areas	(Inani et al., 2013)
The physical setting of outdoor space: characteristics of groundcovers, open spaces, and tree foliage.	Ability to adapt and adjust to natural surrounding	(Ngesan et al., 2013)
Uniqueness of natural features and distinct character of landscape elements	Curiosity of natural features (ability notice details)	(Mahidin & Maulan, 2012)

The findings from the case studies generate three significant components of IN: (i) Nature Attachment (INa), (ii) Knowledge and Capability (INb) and (iii) Inclination towards Nature (INc).

Table 2 Components and Determinants of Interaction with Nature

1 abic	2 Componer	its and Determinants of interaction with Nature		
Definition of IN	Components	Indicators	Code	
The internal and	Nature	outdoor environment determining own health and wellness	INa	
external emotions	Attachment	being able to recall experiences in the natural environment	IINa	
and aptitudes	Knowledge	being able to adapt to various outdoor surroundings		
towards the	and	being able to see and hear what others usually miss in nature	INb	
natural	Capability	being able to notice scientific details of nature	IND	
environment	Саравіні	being able to cope with the outdoor environment	<u>.</u> '	
expressed in the	T 1: /:	feeling the urge to spend time in the natural environment		
contact between human and the ecological nature	Inclination	tending to lose concentration without contact with nature	INc	
	towards Nature	tending to have objects from the outdoors in personal space	INC	
	rvature	spending time planting at home		

Personal Lifestyle (PL) manifests in the personal outlook and approach to life in relation to environmental consciousness (Abu Bakar et al., 2017a, 2017b, 2017c, 2018). Qualities adhere to PL include (i) moral stance in collectivistic values (Laurens, 2012; Clark et al., 2014; Caesar, 2016), (ii) commitment to modest and environmental choices (Horayangkura, 2012; Laurens, 2012; Khare, 2015; Ming et al., 2015), and (iii) environmental concerns through knowledge and awareness (Horayangkura, 2012; Ming et al., 2015).

Table 3 Determinants of Personal Lifestyle

Definition of PL	Indicators	Code
	favouring relationships with others over personal success	PL1
	choosing to disappointing self over disappointing family	PL2
The personal orientation that	taking account others' opinions in making life decisions	PL3
portrays collectivistic worldviews, modesty and	taking the pleasure of working with others	PL4
	practising moderation in purchasing and using resources	PL5
humility towards others as well as	feeling unconcerned if not being able to afford things	PL6
consciousness of environmental	believing that having many assets does not lead to happiness	PL7
issues	being mindful about environmental destruction	PL8
	feeling affected by the environmental loss of other countries	PL9
	urging media to raise more environmental awareness	PL10

According to theoretical fundamentals, the research hypothesizes that IN components are predictable by PL. The following sections provide empirical evidence on the predictability of INa, INb and INc based on PL items.

METHOD

A sample of 4315 was pooled and analyzed. An 11-point Likert scale was given to the Malaysian respondents to reply to questionnaire items which include the components of IN and the ten (10) PL items. Pearson correlation analyses were carried out to determine significant linear associations between the IN components and PL items. After the correlation analyses, multiple linear regression analyses were executed to estimate parameters of the linear equations in order to predict values of INa, INb and INc from PL items.

RESULTS AND DISCUSSION

Table 4 Multiple Correlations between PL items and INa,INb and INc

H_0	There is no statistically significant correlation between INa and respective PL items
H_0	There is no statistically significant correlation between INb and respective PL items
H_0	There is no statistically significant correlation between INc and respective PL items

			Correla	tion Strer	ngth Thres	shold (Da	ncey & R	iley, 2004	ł)		
0	.1	.2	2 .	.3	.4	.5	.6	.7	.8	.9	1
zero		wea	ak		mo	derate			strong		perfect
DV	Stats	PL1	PL2	PL3	PL4	PL5	PL6	PL7	PL8	PL9	PL10
	r	.360**	.345**	.356**	.401**	.350**	.292**	.293**	.347**	.365**	.394**
INa	р	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	N	4315	4315	4315	4315	4315	4315	4315	4315	4315	4315
	r	.321**	.325**	.343**	.366**	.349**	.314**	.323**	.372**	.357**	.337**
INb	р	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	N	4315	4315	4315	4315	4315	4315	4315	4315	4315	4315
	r	.273**	.268**	.298**	.323**	.321**	.297**	.312**	.342**	.326**	.318**
INc	р	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
-	N	4315	4315	4315	4315	4315	4315	4315	4315	4315	4315

At 95% confidence level, there were statistically significant and moderate correlations between INa and (i) PL4 (r =.401, p = .000). Additionally, there were statistically significant and weak correlations between INa and (ii) PL1 (r =.360, p = .000); (iii) PL2 (r =.345, p = .000); (iv) PL3 (r =.356, p = .000); (v) PL5 (r =.350, p = .000); (vi) PL6 (r =.292, p = .000); (vii) PL7 (r =.293, p = .000); (viii) PL8 (r =.347, p = .000); (ix) PL9 (r =.365, p = .000); and (x) PL10 (r =.394, p = .000).

At 95% confidence level, there were statistically significant and weak correlations between INb and (i) PL1 (r =.321, p = .000); (ii) PL2 (r =.325, p = .000); (iii) PL3 (r =.343, p = .000); (iv) PL4 (r =.366, p = .000); (v) PL5 (r =.349, p = .000); (vi) PL6 (r =.314, p = .000); (vii) PL7 (r =.323, p = .000); (viii) PL8 (r =.372, p = .000); (ix) PL9 (r =.357, p = .000); and (x) PL10 (r =.337, p = .000).

At 95% confidence level, there were statistically significant and weak correlations between INc and (i) PL1 (r =.273, p = .000); (ii) PL2 (r =.268, p = .000); (iii) PL3 (r =.298, p = .000); (iv) PL4 (r =.323, p = .000); (v) PL5 (r =.321, p = .000); (vi) PL6 (r =.297, p = .000); (vii) PL7 (r =.312, p = .000); (viii) PL8 (r =.342, p = .000); (vi) PL9 (r =.326, p = .000); and (x) PL10 (r =.318, p = .000).

At 95% confidence level, there were statistically significant positive correlations between (i) INa and each of PL items, (ii) INb and each of PL items, and (iii) INc and each of PL items. The null hypotheses claiming there are no statistically significant correlations between (i) INa and respective PL items, (ii) INb and respective PL items, and (iii) INc and respective PL items were all rejected.

Three (3) multiple regression analyses were carried out to predict the values of each of dependent variables (i) INa, (ii) INb and (iii) INc given the set of PL explanatory variables (PL1, PL2, PL3, PL4, PL5, PL6, PL7, PL8, PL9, and PL10).

	Table 5	Multip		egression – PL p	redicting	; INa		
There will be no	o significant	prediction		H ₀ 1, PL2, PL3, PL4, PI	L5, PL6, P	L7, PL8, PL	9 and PL1	
			Model S	Summary				
Model	R		R Square	Adjusted R Square	Std. Er the Est		Durbin- Watson	
1	.471	a	.222	.220	1.54	620	1.648	
			AN	OVA				
Model	Sum of Squares		df	Mean Square	F		Sig.	
Regression	2934.8	76	10	293.488	122.76	51	.000b	
Residual	10289.	571	4304	2.391				
Total	13224.:	547	4314					
			Coefi	ficients				
	Unstandardized		Standard	ized		95.0% Confidence		
Model	Coefficients		Coeffici	ents	C:-	Interv	Interval for B	
Model	В	Std Error	β	ι	– t Sig	Lower Bound	Upper Bound	
(Constant)	3.253	.152		21.433	.000	2.955	3.550	
PL1	.098	.022	.096	4.360	.000	.054	.142	
PL2	.029	.024	.028	1.211	.226	018	.077	
PL3	.020	.026	.018	.787	.431	030	.071	
PL4	.153	.025	.143	6.027	.000	.103	.203	
PL5	.043	.025	.041	1.717	.086	006	.092	
PL6	009	.022	009	406	.685	052	.034	
PL7	.014	.023	.013	.623	.533	030	.058	
PL8	012	.025	011	481	.631	060	.036	
PL9	.115	.021	.118	5.425	.000	.073	.156	
DI 10	1/15	020	1/10	7 3 1 3	000	106	193	

A multiple regression was generated to predict INa based on PL items. R value of .471 indicated adequate level of prediction (R > 0.4). The Durbin-Watson statistic was 1.648 which is greater than 1.0 and therefore the data was not autocorrelated. A significant regression equation was found, F (10, 4304) = 122.761, p = .000, with an R^2 of .222; indicating that the proportion of variance in INa that can be explained by PL items was 22.2%.

At 95% confidence level, PL1 (B = .098, t = 4.36, p = .000); PL4 (B = .153, t = 6.027, p = .000); PL9 (B = .115, t = 5.425, p = .000); and PL10 (B = .145, t = 7.313, p = .000) were significant predictors of INa. On the contrary, it was found that PL2 (B = .029, t = 1.211, p = .226); PL3 (B = .020, t = .787, p = .431); PL5 (B = .043, t = 1.717, p = .086); PL6 (B = -.009, t = -.406, p = .685); PL7 (B = .014, t = .623, p = .533) and PL8 (B = -.012, t = -.481, p = .631) were not significant predictors of INa.

Personality and Lifestyle (PL) items account for 22.2% of Nature Attachment (INa). Four (4) of PL items were significant predictors of INa.

Table 6 Multiple Linear Regression – PL predicting INb

nere will be no	significant predict	ion of five by FL	1, PL2, PL3, PL4, PI	_3, FL0, FL7, FL6, .	r L9 aliu r L	
		Model	Summary			
Model	R	R Square	Adjusted R	Std. Error of	Durbin-	
Model	K	K Square	Square	the Estimate	Watson	
1	.445ª	.198	.196	1.44301	1.671	
		AN	OVA			
Model	Sum of	df	Mean Square	F	Sig.	
	Squares	uı	Mean Square	Г		
Regression	2210.859	10	221.086	106.176	.000b	
Residual	8962.079	4304	2.082			
Total	11172.937	4314				

			Coefficients					
	Unstandardized Coefficients		Standardized Coefficients				95.0% Confidence Interval for B	
Model	В	Std Error	β	- τ	Sig.	Lower Bound	Upper Bound	
(Constant)	3.188	.142		22.505	.000	2.910	3.465	
PL1	.036	.021	.039	1.721	.085	005	.077	
PL2	.037	.023	.039	1.652	.099	007	.082	
PL3	.050	.024	.049	2.054	.040	.002	.097	
PL4	.083	.024	.085	3.518	.000	.037	.130	
PL5	.044	.023	.046	1.895	.058	002	.090	
PL6	.032	.021	.034	1.542	.123	009	.072	
PL7	.038	.021	.038	1.785	.074	004	.079	
PL8	.093	.023	.094	4.037	.000	.048	.138	
PL9	.097	.020	.109	4.916	.000	.058	.136	
PL10	.033	.018	.037	1.796	.073	003	.069	

A multiple regression was generated to predict INb based on PL items. R value of .445 indicated an adequate level of prediction (R > 0.4). The Durbin-Watson statistic was 1.671 which is greater than 1.0 and therefore the data was not autocorrelated. A significant regression equation was found, F (10, 4304) = 106.176, p = .000, with an R^2 of .198; indicating that the proportion of variance in INb that can be explained by PL items was 19.8%.

At 95% confidence level, PL3 (B = .050, t = 2.054, p = .040); PL4 (B = .083, t = 3.518, p = .000); PL8 (B = .093, t = 4.037, p = .000) and PL9 (B = .097, t = 4.916, p = .000) were significant predictors of INb. On the contrary, it was found that PL1 (B = .036, t = 1.721, p = .085); PL2 (B = .037, t = 1.652, p = .099); PL5 (B = .044, t = 1.895, p = .058); PL6 (B = .032, t = 1.542, p = .123); PL7 (B = .038, t = 1.785, p = .074) and PL10 (B = .033, t = 1.796, p = .073) were not significant predictors of INb.

Personality and Lifestyle (PL) items account for 19.8% of Knowledge and Capability (INb). Four (4) of PL items were significant predictors of INb.

Table 7 Multiple Linear Regression – PL predicting INC

	Table	7 Multiple	e Linear Ro	egressi	<u>on – PL p</u>	redicting	g INC		
				H_0					
There will be n	io significai	nt prediction	of INc by PL	1, PL2,	PL3, PL4, Pl	L5, PL6, P	L7, PL8, PL	9 and PL10	
			Model	Summa	ry				
Model	R	•	R Square	Ac	ljusted R		rror of	Durbin-	
Wiodei	1		K Square		Square	the Es	timate	Watson	
1	.40)5ª	.164		.162	1.67	223	1.604	
			AN	OVA					
Model	Sun		df	Mea	Mean Square			Sig.	
	Squa				*				
Regression	2367		10		36.739	84.660		.000b	
Residual	12035	5.522	4304		2.796				
Total	14402	2.915	4314						
			Coef	ficients					
	Unstar	ndardized	Standard	lized			95.0% Confidence		
Model	Coef	ficients	Coeffici	ents	4	C:-	Interval for B		
Model	В	Std Error	ρ		- t	Sig.	Lower	Upper	
	В	Siu Error	β				Bound	Bound	
(Constant)	3.081	.164	·		18.769	.000	2.759	3.403	
PL1	.030	.024	.028	3	1.218	.223	018	.077	
PL2	010	.026	009	9	382	.702	062	.041	

A multiple regression was generated to predict INa based on PL items. R value of .405 indicated an adequate level of prediction (R > 0.4). The Durbin-Watson statistic was 1.604 which is greater than 1.0 and therefore the data was not autocorrelated. A significant regression equation was found, F (10, 4304) = 84.660, p = .000, with an R^2 of .164; indicating that the proportion of variance in INc that can be explained by PL items was 16.4%.

.047

.067

.041

.040

.070

.083

.085

.066

1.925

2.709

1.646

1.778

3.518

3.747

3.125

.054

.007

.100

.076

.001

.000

.000

-.001

.021

-.009

-.004

.031

.042

.041

.025

.109

.128

.097

.089

.146

.130

PL3

PL4

PL5

PL6

PL7

PL8

PL9

PL10

.054

.074

.044

.042

.079

.094

.086

.028

.027

.027

.024

.024

.027

.023

At 95% confidence level, PL4 (B = .074, t = 2.709, p = .007); PL7 (B = .079, t = 3.225, p = .001); PL8 (B = .094, t = 3.518, p = .000); PL9 (B = .086, t = 3.747, p = .000) and PL10 (B = .067, t = 3.125, p = .002) were significant predictors of INc. On the contrary, it was found that PL1 (B = .030, t = 1.218, p = .223); PL2 (B = -.010, t = -.382, p = .702); PL3 (B = .054, t = 1.925, p = .054); PL5 (B = .044, t = 1.646, p = .100) and PL6 (B = .042, t = 1.778, p = .076) were not significant predictors of INc.

Personality and Lifestyle (PL) items account for 16.4% of Collaborative Engagement (INc). Five (5) of PL items were significant predictors of INc.

Tr. 1.1. (0 0		v of Find	•
Ighie	·	ummart	I Of Hind	1nac

	Table 8 Summary of Findings	
	IV (Predictor Variables) - β	
	PL1 PL2 PL3 PL4 PL5 PL6 PL7 PL8 PL9 PL	.10
DV	INa .096 ✓ .028 🗶 .018 🗶 .143 ✓ .041 🗶009 🗶 .013 🗶011 🗶 .118 ✓ .149	9 ✓
(Outcome	INb .039 X .039 X .049 ✓ .085 ✓ .046 X .034 X .038 X .094 ✓ .109 ✓ .037	7 X
Variables)	INc .028 X 009 X .047 X .067 ✓ .041 X .04 X .070 ✓ .083 ✓ .085 ✓ .066	6 √
	\checkmark = statistically significant predictor; X = not statistically significant predictor	
DV	Indicators IV Top 3 Strongest Predictors	β
INa	• outdoor environment determining own health and environmental awareness PL10 urging media to raise more environmental awareness .1	149
Nature Attachment	taking the pleasure of working with	143
Attachment		118
INb	 being able to adapt to various outdoor surroundings being able to see and hear what PL9 feeling affected by the environmental loss of other countries .1	109
Knowledge and	others usually miss in nature • being able to notice scientific PL8 being mindful about environmental destruction	094
Capability	details of nature • being able to cope with the outdoor environment • being able to cope with the outdoor environment taking the pleasure of working with others	085
INc	the natural environment loss of other countries	085
Inclination towards Nature	destruction	083
	 tending to have objects from the outdoors in personal space spending time planting at home PL7 believing that having many assets does not lead to happiness .0	070

The findings revealed that some of the PL items significantly account for INa, INb and INc. PL9, designating 'feeling affected by the environmental loss of other countries' was in the top three strongest predictors across IN components. The sense of moral responsibilities and concerns on global environmental problems implicitly and profoundly translate into emotions towards and aptitudes in the natural environment. Reaching out to people in different countries to inform on environmental issues are difficult due to language barriers, illiteracy and cultural differences. Local outreach, media outlets and classroom education can ease the communication barriers, spread messages and foster sense of proactive citizenships hence deepen shared empathy towards the natural surroundings.

CONCLUSION

HIE in SSWB promotes the idea the ways humans interact with nature originates from their collectivist backgrounds and biospheric values. This paper evidence that IN is predictable through PL. Statistical modelling on the constructs elaborated in this paper is warranted for future research.

ACKNOWLEDGEMENT

This research was supported by Post-Doctoral Fellow under Research Initatives Grant Scheme (RIGS-PDF), International Islamic University Malaysia (project title: RPDF19-005-0015)

REFERENCES

- Abu Bakar, A., Mohamed Osman, M., Bachok, M., Hitam, M., and Abdullah, A. (2018). Human Interdependency for Sustainable Well-Being: Structural Invariance across Settlement Areas. Planning Malaysia: *Journal of the Malaysian Institute of Planners*. 16(1) pp. 281-293.
- Abu Bakar, A., Mohamed Osman, M., Bachok, S., Ibrahim, M., Abdullah, A., and Abdullah, F. (2017a). A Review on Sustainable Wellbeing Indicators for Human Interrelationships with the Environment. Planning Malaysia: *Journal of the Malaysian Institute of Planners*, 15 (1). pp. 357-368. ISSN 1675-6215.
- Abu Bakar, A., Mohamed Osman, M., Bachok, S., Ibrahim, M., Abdullah, A., and Abdullah, F. (2017b). A theoretical assessment on sustainable wellbeing indicators for people interrelationships. Planning Malaysia: *Journal of the Malaysian Institute of Planners*, pp. 21-30. ISSN 1675-6215.
- Abu Bakar, A., Mohamed Osman, M., Bachok, S., Ibrahim, M., and Abdullah, A. (2017c). Sustainable Well-Being: An Empirical Exploration on Human Interdependence with the Environment. *Advanced Science Letters*. American Scientific Publishers. 23(7) pp. 6352-6356.
- Caesar, L. A. Y. (2016). Performance Excellence by Transformational Leadership in Developing Collectivistic Culture for Indonesian Companies. *Pertanika Journal of Social Sciences and Humanities*, 24(May), 19–32.
- Clark, M., Amar-Singh, H. S., & Hashim, L. (2014). The Subjective Well-Being of Malaysian School Children: Grade Level, Gender and Ethnicity. *Psychology*, 5(5), 1453–1462.
- Dancey, C. and Reidy, J. (2004) Statistics without Maths for Psychology: using SPSS for Windows. Prentice Hall, London.
- Faizi, M., Azaria, a K., & Maleki, S. N. (2013). Design Guidelines of Residential Environments to Stimulate Children's Creativity. *Journal of Asian Behavioural Studies*, 3(February 2013), 25–36.
- Ghazali, R., & Abbas, M. Y. (2011). Paediatric Wards: Healing environment assessment. *Asian Journal of Environment-Behaviour Studies*, 2(January 2011), 63–75.
- Horayangkura, V. (2012). Incorporating Environment-Behavior Knowledge into the Design Process: An Elusive Challenge for Architects in the 21st Century. *Procedia Social and Behavioral Sciences*, 50(July 2012), 30–41.
- Inani, D. I., Abdul Karim, H., & Mohd Amin, M. Z. (2013). Walking Behavior of Urban and Rural Streets. *Journal of Asian Behavioral Studies*, 11(July 2013), 97–110.
- Khare, A. (2015). Influence of Materialism and Money Attitudes on Credit Card Use. *International Business Competition and Growth*, 4(2), 57–77.
- Khotdee, M., Singhirunnusorn, W., & Sahachaisaeree, N. (2012). Effects of Green Open Space on Social Health and Behaviour of Urban Residents: A Case Study of

- Communities in Bangkok. *Procedia Social and Behavioral Sciences*, 36, 449–455.
- Laurens, J. M. (2012). Intervention Program to Change the Pro-environmental Behavior of the Riverside Community. *Journal of ASIAN Behavioural Studies*, 2(January 2012), 45–56.
- Mahidin, A. M. M., & Maulan, S. (2012). Understanding Children Preferences of Natural Environment as a Start for Environmental Sustainability. *Procedia Social and Behavioral Sciences*, 38(December 2010), 324–333.
- Mansor, M., Said, I., & Mohamad, I. (2012). Experiential Contacts with Green Infrastructure's Diversity and Well-being of Urban Community. *Asian Journal of Environment-Behaviour Studies*, 49(May 2010), 33–48.
- Maruthaveeran, S. (2012). The Perception of Social Safety in a Green Environment: A Preliminary Study at the Kepong Metropolitan Park. *Journal of Asian Behavioral Studies*, 1(January 2010), 45–56.
- Ming, B. H., Gan, G. G. G., & Ramasamy, S. (2015). The Role of Concern for the Environment and Perceived Consumer Effectiveness on Investors' Willingness to Invest in Environmental-Friendly Firms. *Kajian Malaysia*, 33(1), 173–190.
- Ngesan, M. R., Karim, H. A., & Zubir, S. S. (2013). Human Behaviour and Activities in Relation to Shah Alam Urban Park during Nighttime. *Asian Journal of Environment-Behaviour Studies*, 4 (October 2013).
- Shukur, F., Othman, N., & Nawawi, A. H. (2011). The Values of Parks to the House Residents. Asian Journal of Environment-Behaviour Studies, 1(5), 85–94.
- Zainol, R., Nordin, N. A., Sandri, D., & Ahmad, F. (2012). Nature Seekers within the Urban Vicinity. *Joruanl of Surveying*, COnstruction and Property, 3(2), 1–13.