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Abstract 

 

Smart built environment mapping is integrating Geospatial Artificial Intelligence 

(GeoAI) to enable advanced analysis, pattern recognition, and decision-making 

processes. This shift in understanding, planning, designing, and managing the 

built environment is paving the way for a smarter, more sustainable future. This 

commentary explores the current role of AI in enhancing technology use within 

the geospatial field, focusing specifically on the application of GeoAI in mapping 

the built environment. Additionally, the paper presents a selection of case studies 

related to the implementation of AI in developing automatic vectorization, 

particularly for geospatial mapping in built environments. This research 

demonstrates the effectiveness of using Convolutional Neural Network (CNN) 

models for sorting objects in scanned, old topographic maps of the built 

environment. The findings of this study are valuable for making informed 

decisions, devising effective strategies, and identifying opportunities for further 

research and exploration within the dynamic field of GeoAI in smart built 

environment mapping and applications. 
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INTRODUCTION 

For the past few years, geospatial technology and AI have made considerable 

strides together. By enabling AI models to automatically extract complex features 

and patterns from geographical data, deep learning techniques have transformed 

the industry. Automated analysis of satellite imagery and geospatial datasets is 

possible because of computer vision algorithms that can recognise and 

comprehend objects and structures in pictures and movies (Sun et al., 2020). With 

the integration of machine learning, computer vision, and deep learning 

algorithms, GeoAI combines AI methods with geospatial data to glean insightful 

information from vast amounts of geospatial data (Zhu et al., 2019). Gartner 

defines GeoAI as the application of AI techniques, such as machine learning 

(ML) and deep learning (DL), to generate knowledge through the analysis of 

spatial data and imagery.  
The significance and possibilities of GeoAI are growing as a result of 

the expansion of geographic data availability, AI developments, and the 

accessibility of vast computing capacity. By automating analysis, interpretation, 

and decision-making, GeoAI can revolutionise conventional geospatial 

technology and take it to new levels of accuracy, effectiveness, and innovation. 

The incorporation of AI algorithms and geospatial data has facilitated the 

mapping and analysis of complex urban landscapes, leading to the emergence of 

smart built environment mapping (Jiang et al., 2020). In the context of intelligent 

mapping of the built environment, geospatial AI facilitates several essential 

functions. It automates the mapping procedure by eliminating the need for manual 

data collection and interpretation.  

This not only saves time and resources but also allows for more 

consistent and frequent mapping updates. GeoAI also improves the precision and 

accuracy of mapping outputs by reducing human errors and biases. As the 

significance of AI in geospatial technology becomes evident, this study aims to 

explore the current role of AI in advancing technology utilisation within the 

geospatial field. Then the objective continued to analyse the performance of AI 

in object detection for historical topographic maps, using a case study as a sample. 

Consequently, the research presented herein sheds light on the potential of GeoAI 

for mapping the built environment, demonstrated through an automatic object 

detection case study of topographic maps in Malaysia. 

 

LITERATURE REVIEW 
Geospatial Artificial Intelligence (GeoAI) 

Artificial intelligence, which involves the development of machines or 

computational methods, encompasses the ability to perform tasks that typically 

necessitate human intelligence. These tasks include reasoning, learning, and 

foresight, enabling the machines to operate effectively within their environment. 
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The first is GeoAI, which is a rapidly developing field of study that merges 

advancements in spatial science, artificial intelligence, and machine learning such 

as deep learning, data mining, and high-performance computing. Its primary 

objective is to extract valuable insights and knowledge from large-scale spatial 

data sets, often referred to as spatial big data (Boulos et al., 2019; Yakub et al., 

2021).  

Next is ML. This AI approach consists of a specific branch within the 

field of AI that relies on statistical techniques or numerical optimisation methods 

to construct models from data, eliminating the need for manual programming of 

each model parameter or computational step (Ja’afar et al., 2021). The last is DL, 

which refers to a particular form of machine learning that involves the utilisation 

of artificial neural networks and algorithms inspired by the functioning of the 

human brain. In this approach, large volumes of data are used to train the neural 

networks, enabling them to learn intricate patterns and prediction rules. 

Through this topic, leveraging the advancements in geospatial data and 

AI capabilities, GeoAI offers substantial advantages for urban planning, enabling 

more effective environmental administration and management in the built 

environment. Integration of technologies in various fields can benefit from 

revolutionised planning, design, and management processes, leading to the 

development of more sustainable and efficient mapping. With automated object 

detection on topographic maps, GeoAI contributes significantly to enhancing the 

accuracy and speed of mapping initiatives, facilitating better-informed decisions 

and smarter urban development strategies in the country. 

 
Smart Built Environment: Enhancing Decision-Making, Efficiency, and 

Sustainability 
In the built environment, GeoAI has become a potent technology that offers 

revolutionary capabilities in several planning, design, and management-related 

areas. The built environment encompasses several key concepts, each vital to 

shaping and managing urban areas effectively. Urban planning involves the 

design and organisation of cities, towns, and other urban spaces to optimise their 

liveability, functionality, and sustainability. Its architecture combines the art and 

science of planning and constructing buildings and structures while adhering to 

standards for usability, aesthetics, and environmental impact. Additionally, the 

infrastructure is the backbone of its civilisation, encompassing essential 

transportation networks, water supply systems, energy systems, and 

communication networks.  

Sustainable development focuses on addressing present needs without 

compromising the ability of future generations to meet their own needs, 

necessitating consideration of economic, social, and environmental factors in 

built environment planning and design. Land use planning in the development 
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process entails selecting the most suitable use for a piece of land, taking into 

account zoning laws, environmental concerns, and local requirements. The term 

"environmental impact" refers to how human actions influence the environment, 

such as pollution, resource depletion, and climate change. The built environment 

has a significant impact on adverse environmental effects, which are what 

sustainable design concepts aim to mitigate. Lastly, community development 

involves enhancing the well-being of a community through various efforts, 

including the construction of public spaces, housing, and infrastructure, thereby 

fostering social, economic, and cultural growth. 

All these key concepts provide a foundation for understanding the 

various aspects and considerations involved in planning, designing, and 

managing the built environment. The built environment could also be understood 

to study the potential for enhancing numerous aspects of the built environment 

that surround humans. To make decisions that contribute to the overall growth 

and management of the built environment, it focuses on improving decision-

making processes linked to urban planning, resource allocation, and policy 

creation. In addition, it looks at how to use resources more effectively, create less 

waste, and produce more with fewer negative environmental effects.  

GeoAI integration in smart-built settings improves urban life quality by 

enhancing infrastructure effectiveness and productivity, promoting sustainable 

development, and enhancing spatial understanding. It aids in informed decision-

making, resulting in more flexible, resilient, and sustainable cities. This 

technology uses AI to analyse geospatial data, leading to intelligent urban 

planning, improved infrastructure management, environmental sustainability, 

and increased catastrophe resilience as applied in built environment studies 

(Mustapha et al., 2023; Mohd Rasu et al., 2023; Adnan et al., 2023; Mohd Zubir 

et al., 2022; Ridzuan et al., 2021; Omar et al., 2021; Rasam et al., 2017; Abdul 

Rasam et al., 2016).  

 

Smart Mapping: Transforming GeoAI Automation in Built Environment 

Applications 
In the context of GeoAI and the built environment, smart mapping extends 

traditional mapping techniques by leveraging the capabilities of AI and geospatial 

technology to generate interactive, dynamic, and insightful visualisations of 

spatial data. With the exponential development of available data, smart mapping 

techniques facilitate the management, analysis, and visualisation of data (Sun et 

al., 2020). AI algorithms can be used to autonomously extract complex features 

and patterns from geospatial data, enabling more accurate and comprehensive 

representations of the built environment (Yuan et al., 2021). 

In addition, smart mapping facilitates the integration of diverse data 

sources and formats, such as satellite imagery, sensor data, social media feeds, 
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and textual reports. By combining diverse datasets, smart mapping enables 

decision-makers to obtain valuable insights for urban planning, infrastructure 

management, and environmental monitoring (Zhu et al., 2019). Other than that, 

smart mapping's dynamic nature allows real-time updates and interactive 

exploration of geospatial data. It facilitates the visualisation of changes and trends 

over time, thereby facilitating proactive decision-making and prompt responses 

to emergent challenges or opportunities. For instance, smart mapping's real-time 

monitoring of infrastructure assets can detect anomalies and initiate immediate 

actions to prevent failures or ensure prompt maintenance (Banihashemi et al., 

2021). Moreover, smart planning improves communication and collaboration 

among built environment stakeholders. It provides user-friendly and intuitive 

interfaces that facilitate effective knowledge exchange, data interpretation, and 

collaborative decision-making. Hence, various disciplines, including urban 

planning, architecture, and environmental management, can interact with the 

mapped data, nurturing interdisciplinary collaborations and promoting holistic 

approaches to addressing complex challenges (Lu et al., 2021). 

Specifically, smart mapping enables decision-makers in the built 

environment to obtain meaningful insights, make informed decisions, and 

promote sustainable development through these developments. To help urban 

planners make well-informed decisions, AI systems can process and evaluate 

enormous amounts of geographical data. By anticipating patterns of urban 

development and enhancing transit networks, GeoAI enables planners to create 

more liveable, sustainable cities (Kopec et al., 2018). 

 

METHODOLOGY 
Case Study of GeoAI Implementation: Automatic Object Detection and 

Classification of an Archived Topographic Map 
This section showcases a sample of a case study and the practical application of 

GeoAI in the context of smart built environment mapping. It demonstrates the 

potential to revolutionise how geospatial data is analysed, interpreted, and utilised 

for creating more intelligent and efficient urban landscapes. The case study aims 

to automate the process of vectorization to achieve smart mapping, realising the 

immediate benefits in time and cost savings as well as improving the accuracy of 

the data. This study uses the Historical Topographic Hardcopy Map as the domain 

of datasets. Figure 1 below shows an example of the dataset. 
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Figure 1: Sample of Historic Topographic Scanned Hardcopy Map 

Source: Mapping Section, PTAR 1 UiTM Shah Alam (Yusof, 2021) 

 

In the context of geospatial data processing, an automatic vectorization 

model provides several important benefits. Utilising a GeoAI deep learning 

model enables the completely digitised vectorization process to be carried out 

using automated procedures. This digitalisation process not only saves 

considerable time but also improves accuracy, providing direct benefits to library 

institutions, particularly their cartography departments. A specific application of 

vectorization is used to prepare maps for smart mapping by transforming 

geospatial views into vectorized data that is ready for use. Library institutions 

normally deal with numerous obstacles, such as a lack of mapping expertise, 

limited human resources, and digitization time constraints. To overcome these 

obstacles, a geospatial domain-specific automated system is devised using 

artificial intelligence. Using AI techniques, this system seeks to streamline the 

digitization process and increase productivity (Anuar, 2021). 

 
Research Framework 
The method of this study is described in Figure 2 below. A general review of 

selected papers was conducted to examine the roles of GeoAI for smart built 

environment applications. The data collection process then involved obtaining 

scanned historical topographic hardcopy maps from the mapping section of 

Perpustakkan Tun Abdul Razak (PTAR) UiTM Shah Alam. The collected images 

were in pdf format. 

Images from scanned maps were then cropped using Adobe Photoshop 

to a size of 244 x 244 inches. From the cropped images, four objects were 

classified in the study: buildings, water bodies, land use, and roads. These objects 

were then subjected to data preprocessing, which included image enhancement 

of colour, clarity, and augmentation. The procedure then continued with the 
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implementation of CNN through training and testing for two methods: CNN 

standard architecture and lightweight. During the data training and validation 

stage, several software tools and libraries were utilised to facilitate the 

processing. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2: Methodology of Study 

 
These include Anaconda, Jupyter Notebook, and a variety of deep 

learning packages and libraries such as Keras, TensorFlow, and PyTorch. 

Additionally, Python served as the primary programming language for 

implementation, while Matplotlib was used for visualisation purposes to analyse 

the model's performance and results effectively. Finally, a conclusion was 

highlighted at the end of the results comparison, highlighting the significance of 

the technique and its future potential in further developing this method. The 

methodological approach combined qualitative and quantitative methods. 

Multiple criteria were used to assess the accuracy of the model's 

performance. First, using graph interpretation, the accuracy of training and 

validation was examined. It was possible to see how the model was learning, how 

well it could generalise, and whether it was overfitting or underfitting by plotting 

the accuracy over epochs. Second, the shape of the loss graph for the model was 

looked at. Plotting the loss function over time allowed researchers to track 

learning progress, identify over- or underfitting, and evaluate convergence. The 

loss function quantifies the difference between predicted and expected outputs. 

Thirdly, to identify prediction mistakes and evaluate accuracy, the confusion 

matrix was used to compile the model's predictions and actual labels. Lastly, the 

classification report used assessment measures to assess how well the model 

predicted accurate class labels, including accuracy, precision, recall, and F1 

score. 
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RESULT AND DISCUSSION 
The Roles of GeoAI for Smart Built Environments: A Review 
The function of AI in the built environment and its possible benefits are examined 

in this article. It investigates how AI approaches and GIS technology improves 

decision-making processes, increase efficiency, enable predictive analytics, 

support infrastructure management, build catastrophe resilience, and promote 

sustainable development by analysing pertinent literature and case studies. 

Consequently, urban planning, infrastructure development, and environmental 

management can all benefit from better decision-making thanks to the integration 

of AI with GIS technologies (Chen et al., 2020). Huge amounts of geographical 

data can be processed and analysed by AI algorithms to yield valuable insights 

that aid professionals in making data-driven decisions (Li et al., 2019). 

Particularly, AI improves efficiency and resource allocation by 

automating the analysis and interpretation of geographical data (Bao et al., 2019). 

AI increases consistency and precision in decision-making and resource 

allocation by minimising manual labour and time-consuming procedures (Zhang 

et al., 2021). Another important addition of AI to the built environment is 

predictive analytics. AI can predict future trends, patterns, and repercussions by 

using historical geographical data and machine learning algorithms (Wang et al., 

2020). This skill facilitates proactive decision-making and increases readiness for 

upcoming difficulties (Zhang et al., 2021). Without a doubt, AI is extremely 

important for managing and maintaining infrastructure.  

Next, by combining AI algorithms with geographical data, real-time 

monitoring, evaluation, and proactive maintenance of infrastructure assets are 

made possible (Li et al., 2020). It enhances the lifecycle management of assets 

by identifying maintenance needs, spotting anomalies, and forecasting possible 

breakdowns (Wang et al., 2019). AI also helps the built environment be more 

resilient and disaster-ready, as well as assists in assessing damage, identifying 

affected locations, and coordinating emergency response operations by analysing 

real-time geospatial data from a variety of sources (Chen et al., 2020). It makes 

planning for evacuations, resource mobilisation, and recovery measures easier 

(Wang et al., 2020). 

AI also aids in sustainable development by integrating AI methods with 

geospatial data (Zhang et al., 2021). It makes it possible to plan for land use, 

evaluate environmental effects, and find potential for green infrastructure (Li et 

al., 2019). AI improves sustainable urban planning and development, lowers 

environmental footprints, and optimises energy use (Bao et al., 2019). The 

application of geospatial and AI in the built environment has broad ramifications. 

AI boosts infrastructure management, raises catastrophe resilience, increases 

efficiency, enables predictive analytics, and encourages sustainable growth. As a 

result, the built environment is now understood, planned, designed, and managed 
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differently as a result of these developments, opening the door to a smarter, more 

sustainable future. 

 

AI-Based Automatic Object Detection and Classification: Result of Testing 

Using the Standard Architecture of CNN 
Based on Figure 3 below, the study observed a consistent increase in training 

accuracy, which suggests that the model was capturing the patterns and features 

presented in the training dataset, allowing it to make better predictions based on 

the data it had seen during training. On the other hand, the validation accuracy, 

which measures the model's performance on unseen data, followed a similar trend 

of improvement but with some fluctuations. Through observation, the loss 

function quantified the disparity between the model's predicted output and the 

expected output, intending to minimise this difference during training. Plotting 

the loss over epochs provided valuable information about the model's learning 

progress and convergence. The significance of the loss graph and its 

interpretation monitored the model's learning progress, with decreasing or 

plateauing losses indicating effective learning. 

 

 
Figure 3: Graph of Model Accuracy-Loss for Training and Validation 

 
The analysis of the training then continued with the classification 

report. Based on the results in Figure 4 below, the F1 scores reflected a balance 

between precision and recall for each class. Classes 0, 2, and 3 demonstrated 

relatively high F1 scores, indicating a harmonious trade-off between precision 

and recall, while class 1 has a slightly lower F1 score of 0.73. This implies that 

the model might encounter challenges in achieving a balanced performance for 

class 1. Considering the overall performance, the model exhibited an accuracy of 

82%, indicating its ability to correctly predict the class labels for a majority of 

instances. The macro averages for precision, recall, and F1-score were 0.86, 0.83, 

and 0.83, respectively, indicating an acceptable overall performance across all 

Intersect graph between 

training and test line shows 

good model. However. 

overfitting to occur at epoch 

30 and the gap become larger 

when the epoch increase. 

Intersect graph between 

training and test line shows 

good model. However. 

overfitting to occur at epoch 

30 and the gap become larger 

when the epoch increase. 
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classes. The weighted averages, which were considered the support for each class, 

yielded similar values, with precision at 0.86, recall at 0.82, and F1-score at 0.83. 

 

 
 Figure 4: Classification Report for Dataset Training and Validation 

 

Result of Testing Using an Advanced Lightweight Model 
Lightweight Convolutional Neural Networks (CNNs) have gained significant 

attention in the field of computer vision. It is specifically designed to provide 

efficient and accurate feature recognition on resource-constrained devices, such 

as mobile phones or embedded systems.  

The lightweight CNN architecture incorporates depth-wise separable 

convolutions, which decompose the standard convolution operation into depth-

wise convolutions and point-wise convolutions. This factor significantly reduces 

the computational complexity of the network while maintaining a good level of 

recognition accuracy (Howard et al., 2017). By utilising MobileNet, lightweight 

models based on MobileNet have demonstrated their effectiveness in automating 

feature extraction, aiding applications such as road extraction (Wang et al., 2019) 

and building footprint recognition (Zhang et al., 2022) on hardcopy maps. The 

relationship between MobileNet and lightweight CNNs highlights the impact and 

versatility of MobileNet's design principles in addressing the challenges of 

resource-constrained environments and specific application domains like 

hardcopy map feature recognition. 

Through the results in Figure 5 below, the accuracy metric measured 

the model's performance in terms of correctly classified samples, with higher 

values indicating better accuracy. Looking at the accuracy values, there was an 

increasing trend over the epochs. The model's accuracy started at 0.4800 and 

reached a peak of 0.9974 at almost every epoch. Similarly, the validation 

accuracy started at 0.2500 and reached a peak of 0.990 at epoch 185. 
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Figure 5: Graph of Model Accuracy-Loss for Training and Validation 
 

This improvement in accuracy suggests that the model is learning and 

making better predictions as the training progresses. Based on the model loss 

graph, the loss metric represented the model's error during training, where lower 

values indicated better performance. The accuracy metric measured the model's 

performance in terms of correctly classified samples, with higher values 

indicating better accuracy. The loss on the training data decreased from 1.2365 

to almost 0 throughout the training data. As well as the testing, the graph pattern 

shows a uniform decrease of almost 0 loss over the epoch, indicating that the 

model is learning and improving its predictions. 
 

 

Figure 6: Classification Report for Dataset Training and Validation 
 

Based on the above Figure 6 experiment results, the classification report 

shows classes 0, 1, 2, and 3 demonstrated relatively high F1-scores, indicating a 

high prediction percentage with an average of 90% successful prediction. This 

indicates that a significant proportion of instances predicted by these classes are 

correct. The results also achieved a training accuracy of almost perfectly 99.99% 

and a validation accuracy above 90% on epoch 200 with several trained datasets 

Non intersect graph between 

training and test line shows 

poor model. This also indicate 

overfitting occur at every 

epoch during the training 

process. 
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of 1320 images. Overall, the lightweight CNN model demonstrated successful 

performance in accurately identifying objects in topographic hardcopy map 

datasets, exhibiting high accuracy levels on both training and validation data. 

 

CONCLUSION 
This paper has demonstrated the effectiveness of employing Convolutional 

Neural Network (CNN) models for object classification in scanned historical 

topographic maps. The use of AI has revolutionised the way geospatial data is 

collected, analysed, and interpreted. Moreover, the study underscores the 

significance of leveraging Geospatial AI technologies to facilitate informed 

decision-making and foster responsible urban development. By adopting 

innovative methods such as automated object detection in topographic maps, 

planners and policymakers are better equipped to tackle critical issues related to 

land use management, infrastructure planning, and environmental conservation. 

This, in turn, promotes the development of a more resilient and sustainable built 

environment for future generations. Looking ahead, this paper outlines several 

recommendations for future research and potential industry applications. A key 

area for further investigation involves the integration of advanced deep learning 

techniques, such as transfer learning or ensemble methods, to improve the 

accuracy and efficiency of object classification. Additionally, examining the 

scalability of the developed methodology to larger datasets or different 

geographical regions could offer valuable insights into its broader applicability. 
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